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PREFACE 

The models discussed in this paper were developed for the Future 

Force Structure Studies and Analysis Branch, DCS/Plans, Hq Strategic Air 

Command during the period from September I969 through July 1970. 

Although each of the authors was involved in the total project, 

Major Goodyear was primarily responsible for the concept formulation and 

application, Major Hodson for the development of the mathematical models, 

and Captain Goethert for the computer implementation. 

While the models were developed for a strategic scenario, there 

would seem to be no reason why they could not be applied with equal 

success in the tactical arena. In fact, they are rather general resource 

allocation models, and need not be tied to military applications at all. 

The reader interested in applying this work to other allocation problems 

should replace the word "weapon" with "resource" and "target" with "task," 

whenever he encounters them in the text. 

The authors would like to express their thanks to the F iture Force 

Structure Branch for their continuing support in this project. 
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ABSTRACT 

A  two-step optimization procedure   using linear   programming   is 

employed to obtain a near-optimal solution to the  large-scale,  multiple- 

weapon  type  allocation problem. 

Initially,   the target   system  is  partitioned   into  target   categories, 

each of which  contains  targets  of equal worth and  similar   characteristics. 

Then,   depending upon the requirements  of  the particular  problem  addressed, 

one of  three  different   linear programming models  is  used   to allocate  the 

available  supply of weapons  among the  target categories.     Instead of 

inputing a  point value  for  each  target  category,   as   is  frequently done 

in other allocation models,   in these models  the  user   indicates a  desired 

ratio of  the probability of  survival  of   the various  categories. 

After  the  allocation of weapons  among the categories  has been 

accomplished,   an integer programming model   is used  to assign weapons to 

individual  targets within each category   so as  to minimize   the average 

probability  of  survival of  the category. 

These models have been programmed  for an IBM 7090 computer  at 

Headquarters Strategic Air  Command. 
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CHAPTER I 

INTRODUCTION 

THE WEAPON ALLOCATION PROBLEM 

The general problem of weapon allocation is  that of assigning weapons 

to targets in such a way as to achieve a desired level of destruction. 

The ideal situation would occur, of course, if for each target a 

single weapon of precisely the right yield were available and the weapons 

were assured of impacting on their targets.  Since, in reality, this case 

never occurs, the problem becomes one of deciding either how to minimize 

the number of weapons required to inflict a given amount of damage, or 

how to maximize the amount of damage inflicted with a fixed supply of 

weapons. 

The problem of minimizing the expenditure of weapons frequently 

occurs In sub-optimization exercises, and also in cases In which a 

sufficient number of weapons are available to achieve the desired level 

of destruction to all targets in a target system.  However, the problem 

which faces the strategic planner more frequently In considering possible 

future force structures Is that of maximizing damage to an entire target 

system with various arsenals of weapons, after having suffered a loss of 

weapons through a prior enemy strike. 

IMPORTANCE OF GOOD ALLOCATION METHODS 

Comparing Arsenals 

When different combinations of types and numbers of weapons are 

applied to the same target system with the same targeting philosophy, It 

Is possible to measure the effect of adding, retaining, or deleting 

certain weapon systems.  Such a measurement, however, Is meaningful only 

If an optimal (or very nearly optimal) allocation method is used, since 

an Inefficient procedure may easily lead to erroneous conclusions in 

comparing two hypothetical arsenals. 



Detailed Allocations 

In preparing an actual  detailed assignment of weapons to targets, 

as opposed to an aggregate allocation  (as is  done  in  this paper,   for 

example),   there may be operational or  subjective reasons  for  the  force 

applicator  to deviate  from the aggregate  analysis.     However,  only  if he 

has  an algorithm which gives  him a very good  indication of what  the 

optimal aggregate allocation  is,  will he be  able  to make a meaningful 

evaluation of the quality  of his plan. 

MILITARY TARGET ALLOCATION 

The  linear programming models described  in this  paper are designed 

to provide near-optimäl allocations of weapons  to maximize damage  to an 

entire  target  system.     They have recently been used by  the  Strategic Air 

Command  in several  force  structure  studies  for  the Jo^nt  Chiefs of  Staff. 

With the existing computer  program,   the models are  capable of han- 

dling problems with as many as JO different  categories of targets and  50 

different  types  of weapons.     There  is  no  limit on  the  number of targets 

in each  category or  the number of weapons of each  type. 

Although the model may be used  independently,   the  Strategic Air 

Command  is presently  using  it  for  the military  target  allocation  in a 

two-sided,  general war,   total  exchange model. 

Strategic Retaliatory  Scenario 

In  the  scenario  for  this model,  Red   launches a   first  strike  counter- 

force attack on  Blue's offensive and  defensive  forces  and command control 

elements.     Red withholds   sufficient  forces  to maintain a high proportion 

of  Blue's  urban-industrial resources  in jeopardy.     The  goal of Red's 

first   strike   is  to disarm  Blue  to such an extent  that   the outcome  of any 

subsequent exchange will  result   in a  decided balance  of power  favorable 

to  the   initiator. 

The  problem  facing  the  Blue planner   is   to allocate his  surviving 

forces   to  insure   that he   is   still capable  of  destroying an unacceptable 



fraction of the Red urban-industrial base.  If possible he would also 

like to atMck those forces, and their supporting facilities, that Red 

withheld with the aim of liinitin0 possible damage to the Blue urban- 

industrial complex.  The goal of the Blue response is to restore the 

balance of power with the hope of preventing the commitment of weapons 

on U/I targets. 

Input Data 

In the SAC model, a portion of the weapons which survive an enemy 

first strike are allocated to defense suppression, urban-industrial, and 

NJül power tasks first. Whatever is left over becomes the input to the 

military target problem.  If the linear programming models are used 

independently, the available supply of weapons by number and type must be 

given. 

When the defense suppression allocation has been made, the penetra- 

tion rates (or, properly, the prcbabilities of successful penetration of 

enemy defenses) are determined.  These figures in conjunction with the 

probabilities of launch survival, weapon system reliabilities, yield, 

accuracy, target hardness, etc., enable an expected probability of kill 

for each weapon/target combination to be computed. 

While these figures represent much more than educated guesses, still 

they are uncertain.  It has recently been suggested that instead of 

regarding these probabilities as single parameters, it would be better to 

think in terms of probability distributions of probabilities.2 While this 

suggestion certainly has a considerable amount of intuitive appeal, the 

notion of expected value is probably at present the most manageable 

approach for aggregate analysis in support of future force structure 

determination. 

To reduce the size of the military allocation problem to computable 

proportions, targets of similar worth and with approximately equal pro- 

babilities of survival when targeted with identical weapons, are 

aggregated into a single target category.  For example, all missile silos 
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of a particular type in a particular geographic area might be placed in 

the same category. 

Thus the input data consists of the number of weapons of each type, 

the number of targets in each category, and the matrix of probabilities 

of survival for each weapon/target combination. 

Targeting Philosophy 

The user of the model specifies three targeting controls. 

First, the desired ratio of damage among the various categories is 

stated.  Presumably, this would reflect the relative worths of the targets 

in each of the categories.  This should not, however, be confused with 

assigning a point value to each category, as is done in most models. 

Using an allocation based on point value per target, the level of expected 

damage inflicted upon a particular target may have little relation to its 

worth.  Frequently target hardness and weapon effectiveness become the 

driving factors.  The user of such a model may find to his surprise that 

all his weapons went on soft targets of less worth simply because the model 

"scored more points" by such an allocation.  The temptation at this point, 

of course, is to solve the problem again, but this time with an increased 

worth input for the harder targets. The sophisticated user realizes, 

however, that by so doing he has discarded the value system which he 

initially assumed was correct.  He might just as well allocate his weapons 

subjectively without the benefit of a mathematical model. 

On the other hand, in the method proposed here, there are no such 

surprises.  If the user decides that he wants two categories of targets 

to survive an attack in the ratio of 2 to 3, the output reflects this. 

If a certain number of weapons are available, the actual allocation may 

result in the probabilities of survival (one minus the damage expectancy) 

being .2 and .3 respectively.  If fewer weapons are available, the 

probabilities of survival might be .5 and ,75 respectively, but in any 

case the probabilities of survival will be as small as the number of 

weapons committed allows and in the ratio specified. 
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Second,   the maximum damage desired for each category  is  specified. 

This  effectively stops allocation  to a  particular  category at  a  point 

where  the user  considers  further allocation either wasteful  or  for  some 

other reason undesirable.     The model may be used either with or without 

these  restrictions. 

Third,   the user may  declare  certain  target   categories   ineligible   for 

certain weapon  systems,   because  of range   limitations,   high  expected 

attrition,  or other reasons. 

The Output 

The output from the linear program gives the number of weapons of 

each type which are assigned to each category, and the average pro- 

bability of survival of each category. 

Sequenced Allocations 

Rather than performing a single optimization in which all weapons 

available are used, it is sometimes desirable to make separate alloca- 

tions for land launched missiles, sea launche \  missiles and bombers.  By 

keeping the ratios the same from one allocation to another, it is possible 

to induce a considerable amount of cross-targeting.  If the user wishes, 

however, he can vary the ratio in order to direct a certain class of 

weapons against various target categories.  Furthermore, each allocation 

may be made completely in isolation or by considering the expected damage 

from prior attacks.  This feature gives visibility to the overall 

degradation of effectiveness in case of a catastrophic failure of one or 

more classes of weapons. 

Another interesting feature of sequenced allocations is the capabil- 

ity of assessing the value of reconnaissance followed by retargeting.  In 

this user option, the number of targets within each category is reduced 

after each allocation by multiplying the original number of targets by 

the average probability of survival of the category. 

Allocation Within Categories 



After the initial master allocation has been made, it is known how 

many weapons of each type are to be assigned to each category.  By using 

the integer programming model, described in the next chapter, it is then 

possible to determine the optimal assignment of weapons against each 

individual target within each category, should the user desire this 

information. 

Variations 

One of the virtues of linear (and integer) programming, is great 

flexibility.  If additional operational restrictions on a problem are 

encountered, frequently it is possible to reflect such restrictions by 

minor modifications of the original program. 

For example, if the user desires that every target be assigned at 

least one weapon, this constraint is easily added (assuming, of course, 

there are more weapons than targets). Also, if certain combinations of 

weapons are forbidden for operational reasons, a small change in the 

program eliminates such allocations from consideration. 



CHAPTER II 

THE LINEAR PROGRAMMING MODELS 

MATHEMATICAL PRELIMINARIES 

Allocations 

Suppose that there are m distinct types of weapons and that there 

are b^ weapons of type  i available (i=l,. . . ,ni). Also suppose that 

there are n categories of targets.  Then by an allocation we mean an 

assignment of a certain number of weapons of each type to each category 

such that the available supply is not exceeded. 

Let Ajj represent the number of weapons of type  i assigned to 

category j.  An allocation can be represented as the m by  n matrix 

(Aji) where the rows represent weapons types and the columns represent 

target categories. 

For example, suppose that there are two weapon types, with fifteen 

weapons of the first type and ten weapons of the second type available, 

and three target categories.  Then the following matrix represents one 

possible allocation: 

3    8    4 

12     7 

Notice that the rows add to 15 and 10 respectively, indicating that 

all weapons have been used. The matrix 

2    4     6 

1    3     h 

also represents an allocation, but in this case not all available weapons 

have been used.  The matrix 

k 

I 

7 

5 

8 

2 



does not represent  an allocation,   since  the  sum of the entries   in the 

first row exceeds   15. 

The  total  number  of possible allocations  is extremely  large even  for 

rather  small  problems.     For example,   in a  problem in which there are  only 

two  types  of weapons,  with three weapons  of each type available,   and two 

target  categories,   there are kOO possible  distinct allocations.     Thus, 

for realistic  problems,   it  is computationally  infeasible  to measure  the 

effectiveness  of each possible allocation against  the chosen criteria  to 

determine which  is optimal.    More  sophisticated procedures must be used 

to find optimal  solutions. 

Linear  Programming 

A  linear programming problem is an optimization problem of the  form: 

Maximize  C1X1  + C2X2  + • • •   + CnXn 

Subject  to 

a11X1 + 812X2 + + amXn = bi 

+ a2nXn = b2 

amiXi + 81^X2 + • • • + amnXn = bm 

where the Ci, bj, and ajj are constants and the Xi are variables which 

may take on only non-negative values.  (if, in addition, the X^ are 

constrained to be integers, such a problem is called an integer programming 

problem.) 

The theory of linear programming is highly developed, and there are 

efficient algorithms for finding solutions to problems which either 

naturally occur in this form or which can be put in this form.  The 

computational efficiency of linear programming algorithms results from 

the fact that every possible n-tuple (Xi,*'',^) need not be checked in 

order to attain an optimal solution. 

Computing Probability of Survival 

If Dji is the probability that a single target in the j£ll target 

category will be destroyed by allocating a single weapon of type  i  to 
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it, then Sjj = 1 - Dij is the probability that it will survive. 

If a single weapon of type k  is also allocated to the target, then 

the probability that the target will be destroyed is 1 - (l - Djj)(1 - DRj) 

and the probability that it will survive is (l - Di j) (1 - Dkj / = SyS^j, 

assuming that the arrival of one weapon is not dependent upon that of the 

other. 

In general, then, if T^j^ weapons of type i are allocated to 

cular target 

it will survive is 

particular target  k  in the j— target category, the probability that 

Tijk  T2jk     Tnjk    in    TJJJ^ 

sij       s2j       .--s^        =   IT Sij 
i = l 

The average probability of  survival  of  the  j~ category  is defined   is  the 

arithmetic mean of  the probabilities of   survival of each of  the   individual 

targets within the category,   i.e., 

aj T IT. ^jk 

hi TJ^i) 
where a^  is  the  number of individual  targets  in the j— category. 

For example,   suppose two targets are aggregated into target  category 

1, and suppose one weapon of type  1 and  two weapons of type 2 are allocated 

to the  targets  in this category.     Suppose  the actual allocation  is one 

weapon of each type to the first  target and one weapon of type 2 to the 

second target.     If Sn =  .5 and S2i =  .4,   then the probability of survival 

of the first  target  is  i.^)i.k) =  .2 and the probability of survival of 

the second target  is   .k.    Thus the probability of survival of the category 

is l/2(.2 + .h)  =  .3. 

An Approximation 

The expression for  the probability of survival of the j~ category, 



J  m       T 

i,! TT ^ ijk 
k=l i=l 

Is difficult to deal with s.nce it is a sum of products.  Therefore we 

shall approximate it with 

m a* 

r[(sij) ij where ^j ^Z1! 
k=i 

jk 

In other words, X^i is the average number of weapons of type  i allocated 

per target to targets in category j.  The rationale for this approximation 

follows. 

a* 

m      x- •    m      —    X^ 

TT(s1J)
lJ = TT(slj)

aJiJ1 
ijk 

m 

i = l 

m ai 

TTl TTcs^) 
Ul   \  k=l       lJ 

ijk 

m 

k=l     \   i= 
(Sij) 

ijk 
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m 
T,- 

(S^W of  the  outside product 
i=l J 

are   the  probabilities of  survival  of  each of the  individual   targets.    Apply- 

ing  the well-known geometric-arithmetic   inequality 

n 

TTP. 
i = lri 

(with equality when all the P^ are equal) to our problem, we find that 

m a'  ^ 

i=l  1J 

ijk 

i=l 

"TT    Xij 
In other words,I I (SJI)   is always less than or equal to the actual 

i=l 'ij 
;th probability of survival of the j— category, with equality occurring 

whenever the probability of survival of each individual target within the 

jJiil category is the same. 

The magnitude of the error introduced by making this approximation 

is difficult to assess for realistic problems, but it is believed to be 

small. 

For example, suppose there are 25 targets in the j— category, and 

suppose the probability of survival is 0.5 for the first 10, 0.4 for the 

second 10, and 1.0 for the remaining 5«  Then the actual probability of 

survival of the category is O.56O while the approximation yields O.525. 

THE LINEAR PROGRAMMING MODELS FOR ALLOCATION AMONG CATEGORIES 

The underlying concept of the linear programming model is to force 

the probability of survival of each category to as small a value as 

possible consistent with:  first, the targeting philosophy (which takes 

the form of a predetermined ratio of desired probabilities of survival 
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for each of the categories), and second, the available supply of 

weapons. 

In the previous section a justification for the use of the expression 

m 

n (s./'j 
1=1    -, 

to approximate  the probability of  survival of the  j— category was given. 

The  number  of weapons of  type     i    which are allocated  is easily  seen to 

be 

n 

1' 
n 

ajXi-, 

j = l 
Suppose  now that  the  targeting philosophy  chosen indicates  that  the 

desired ratio of the probabilities of survival of the n categories are 

Ci:C2: •• ' tCn. Then if we introduce the auxiliary variable Y, the mathe- 

matical model for the allocation problem is: 

Minimize Y 

Subject  to 

1') TTlSij)  ^CjY;   j = l. 
1=1 

and 

n 

2' )    ^SajXijlbi;   i = l,---,m 

j=l 

In rather  imprecise   language,   the model uses Y with  the  coefficients 

Cs   to "squeeze  down"   the  probability of survival of each category  in the 

stipulated ratio consistent with  the available  supply of weapons. 

This mathematical model   is,   however,  a  non-linear  programming problem 

since  condition    I1   are  non-linear   in  the variables X...     This  difficulty 

is  easily resolved by  taking  the   logarithm of both  sides  of each  inequality, 

yielding  the  equivalent   set  of  inequalities 

12 



m 

l)   VClog SijjXij^ log Cj   + log Y;   j=l,---,n 

i=l 

Now  let Y =  log Y.     By the monotonicity of  the   logarithm  function, 

minimizing Y will minimize Y.     This change yields  an equivalent   linear 

programming problem for which  solution methods are  readily available. 

The  Basic LP Model 

The basic   linear  programming model  is 

Minimize    Y 

Subject  to 

m 

l.)y(Log SijjXij  - Y<   log CJ;   j = l,---,n 

1=1 

and 

n 

2.)^ajXij<bi;   1=1,•••Jm 

j=l 

Example: 

Consider an allocation problem with three weapon types and three 

target categories. 

Let 

ai  =10 bx = 20 

as  =16 b2 = 25 

33  =21 b3 = 28 

Sn =  .20 S12 =  .17 Sis =  .25 

S2i =  .30 S22 = .29 S23 =  .5k 

S31 = -^5 S32 = .k6 S33 = .49 

when ai   is  the number  of targets   in category j,   and  S^;   is  the probability 

of  survival of a  single  target   in category  j when  targeted with a  single 

weapon of  type  i,  and   let  the  desired ratio of  target  category survivabll- 

Ity be   100:9^:87.     Then  the   Basic LP model  is 

13 



Minimize Y 

Subject to 

(log .20)Xii+(log .50)X2i+(log .i+5)X3i-Y< log 100 

(log .17)X12+(log .29)X22+(log .k6)X3Z-Y<  log 9^ 

(log .25)Xi3+(log .3^)X23+(log .1+9)X33-Y< log 8? 

IOX11+I6X12+2lXi3< 20 

IOX21+16X22+2 1X23<  25 

IOX31+I6X32+21X33<  28 

Interpretation of Results 

The output of the Basic LP model is the set of values for the 

variables XJI  which minimize Y and satisfy the constraint inequalities. 

For the previous example, these values vere found to be: 

Xu =  .^29       X12 = .981       X13 =    0 

X21 =       0 X22 =     0 X23 = 1.190 

X31 = 1.254 X32 =0 X33 =    .7^5 

Since X^^ is defined to be the number of weapons of type i allocated 

per target to targets in category j, the actual number of weapons allocated 

is diX^i.    For example, the number of weapons of type 5 allocated to 

category 3 is (21)(.7^5) = 15'6.  Since this number is not an integer, it 

should be rounded to the next lower integer. This rounding error is quite 

small, percentagewise, if the value for a^X^ is large. 

Using our approximation for the probability of survival of each 

category, the probabilities in the example are .187, .176, and .I63 for 

categories one, two, and three respectively.  These are, of course, 

precisely in the ratio 100:94:87. The actual probability of survival of 

each category can be computed only after the allocation within each 

category is made. An optimal method for doing this will be discussed 

later in this chapter. 

The Advanced LP Model 

Ik 



In realistic  targeting problems,   it  is  frequently desirable  to  limit 

the  level of destruction of a  target  system to a certain predetermined 

figure rather  than simply to use all available weapons.    This can be 

achieved through an extension of the Basic LP model by adding a  constraint 

for each "cutoff"  desired and by including additional auxiliary variables. 

To insure that  the probability of survival of the jÜl target category 

is at  least a certain predetermined value  P*,  we add the constraint 

m 

(log Sij)Xij> log Pj 

^1 

for each target category j where such a constraint is desired. 

Unfortunately, the addition of these constraints is not all that is 

necessary.  Since from the Basic LP model we already have the constraint 

m 

Vdog sij)xij-y< log Cj 
i=l 

the two together  imply the constraint 

log Pj  -   log Cj< Y 

In other words, when cutoff is achieved on one category, Y could be 

minimized no further and the allocation would  stop »t  that point. 

To eliminate  this problem, more than one auxiliary variable must be 

introduced.     Instead of Y,   the auxiliary variables,  Yi,Y2,',-,Yn are used. 

The Advanced LP Model  is 

Minimize      miYi+m2Y2 + ' • •+mnYn 

Subject to 

m 

1)       J/108 Sil)xii"Y^ lo8 Ci 
i=l 

m 

Vdog Si2)Xi2-Y1-Y2< log C2 

i=l 

15 



m 

^(log Sin)Xin-Y1-Y2 Yn< Cn 

1=1 

n 

2)       YajXij^ bi^^l.-'-.m 

3)      ^(lo8 sij)Xij> log PJ;  j=l,---,n 
1=1 

Ci        do                       Cn 
- ■L -f    g   <; <; " 

where   the   inequalities are ordered  so  that p   — p    "-''' ""fn  and m-j^ ,m2, • • • ,mn 

are  suitably  chosen positive  numbers   such that ini>m2> • • • ^mn . 

If mi   is chosen  sufficiently   large relative   to the  other m^,   then 

until   the   first  cutoff  is  reached,  Yi will be  the  only Yi which  is 

reduced   in value.    Up  to   this   point  the model   is   for all  practical purposes 

identical  with  the  Basic   LP Model. 

However,  when  the   first  cutoff  is achieved,   Yi  can be  reduced no 

further.     At   that  point   if m2   is   sufficiently   large relative   to the 

remaining mi,   then until   the next   cutoff  is achieved,   Yg will be   the only 

Yi which   is  reduced   in value,   and   so on. 

The   choice  of a   proper  set  of m^  parameters   is a   difficult  one,   and 

a   satisfactory method  for   choosing  it  remains  an  unsolved  problem.     In 

realistic   problems   it  appears   that   If m^   is  greater  than vn^^i  by  a  factor 

of ten,   this   is   sufficient.     However   for  an allocation  problem with a 

large  number  of  cutoffs,   and hence  a   large number   of m^,   scaling problems 

within  the  computer  occur.     Research   in  determining the minimum factor by 

which  each m^ must  differ   from  its   successor  is  continuing. 

Example   (Continued): 

If,   in  the  previous  example,   it   is  desired  to  limit  destruction of 

each  category  so  that   its  probability  of  survival   is  at   least   .168,   then 

the Advanced LP Model  is: 
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Minimize 9Yi +3Y2+Y3 

Subject  to 

(log   .25)Xi3+(log   .Jkhzs+ilog  .h9)X33-Y1< log 67 

(log .17)Xi2+(log  .29)X22+(log .46)X32-Y1-Y2< log 9^ 

(log  .20)Xii+(log  .30)X2i+(log  .45)X31-Y1-Y2-Y3< log 100 

lOXi 1+I6X12+2IXi3< 20 

10X2i+l6X22+21X23< 25 

10X31+16X^+21X335 28 

(log   .25)Xi3+(log    .54)X23+(lOg    .49)X33>   log       .168 

(log  .l7)Xi2+(log  .29)X22+(log  .k6)x32> log     .168 

(log  .20)Xii+(log .50)^2i+(log  .45).'3i> log     .168 

Here a  factor  of 3 for  the mi  turned out  to be  sufficient.     The 

values for  the Xjj  are 

Xu =   .401 X12 = .999 X13 =       0 

X21 =        0 X22 =      0 X23 = 1-190 

X31 = 1.331 X32 =      0 X33 =   .699 

Using the approximation  for  the probability of survival of each 

category,  these values are   .181,   .171»  and  .168 for categories one,   two, 

and  three respectively.     In comparing these  results with  the results  of 

the example  in which no cutoffs were  included,   it can be  seen that weapons 

were  taken off category three   to bring its probability of  survival up 

to  .168 and were applied to categories one and two to reduce their pro- 

babilities of survival  in the  specified ratio 

The Alternate Advanced LP Model 

If suitable parameters mi,*a<,mn cannot be found, then a succession 

of Basic LP problems can be solved to find the solution in the following 

way: 

Write the problem as a Basic LP problem with the one additional 

constraint 

m 

^(log SiJXi^log Pi 
i=l 
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If the allocation results  in this constraint being satisfied as a 

strict   inequality,   then no cutoffs were  achieved and  the solution to  the 

original problem has been attained. 

If,  on the  other hand,   an equation results,   the  same Basic  LP 

problem must be   solved with  the  two constraints 

m 

/"(log SiJXu«  log ?1 

1=1 

m 

VClog SiJXu^ log P2 

i=l 

added and  the  constraint 

m 
Vdog Sil)Xll-Y< log Cj. 

i=l 

removed. 

The succession of modified Basic LP problem is continued until the 

newly added inequality is satisfied strictly.  If this never happens, 

then the "sufficient weapons condition'1, to be described next, has occurred, 

The "Sufficient Weapons Condition" LP Model 

If in a particular allocation problem in which cutoffs are included 

for each category there are a sufficient number of weapons available to 

achieve each cutoff, then it seems appropriate to use a different criterion 

for making the allocation.  This may take the form of minimizing the total 

number of weapons used to do the job, using some weapons in preference to 

others, or some similar criterion.  The LP Model in this case is 

Minimize 

n    m 

22diajXij 
j=i 1=1 
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Subject  to 
n 

1) 

2) 

/  a^Xi^<bi;   1=1, ••-.m 

j = l 

V   (log   Slj)Xij<l0g   PjJ    j = l, •••,!! 

i=l 
where the d^ are suitable chosen positive constants. 

If it is desired to minimize the total number of weapons used, all 

the d^ are set equal to one.  On the other hand, if it is desired to use 

weapon i in preference to weapon j , then d* is chosen greater than d^. 

This has the effect in the IP Model of making it more "expensive" to 

allocate weapons of type j.  Clearly many other modifications are possible 

depending on the desires of the user. 

Example (Continued): 

If in the previous example, the cutoffs had been set at .25 for each 

category, then the sufficient weapons condition would exist.  Thus for 

our example, if it is desired to minimize the number of weapons, we must 

Minimize  10Xii+l6Xi2+21Xi3+10X2i+l6X22+21X23+10X31+16X32+21X33 

Subject to 

10Xii+l6Xi2+2lXi3< 20 

10X21+16X22+21X23^ 25 

10X31+16X32+21X33^ 28 

(log .20)Xii+(log .30)X2i+(log A5)X3i£ log (.25) 

(log .17)Xi2+(log .29)x22+(log .h6)x3B^  log (.25) 

(log .25)Xi3+(log .54)X23+(log .49)X33< log (.25) 

The values for the X^j are 

X11 = .7^8      X12 = .782      X13 =   0 

X21 =0 x22 =      0 x23 = 1.190 

X31  =  .228 X32 =0 X33 =     .142 
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Each of the categories has a probability of survival of 0.25.  Since 

weapon type three is the least effective, weapon types one and two were 

used until their supply was exhausted and then five weapons of type three 

were used to bring the probability of survival down to the specified 

figure. 

If, for some reason, it is desired to use weapon type three with 

highest priority, and then two and one in that order, this can be 

accomplished by setting di=100, d2=10, d3=l in the objective function and 

leaving the constraints unchanged.  In this new problem, the X^i  are 

Xn =0       X12 = .563       X13 =    0 

X2i = 1.15 X22 = .5I5 X23 =  -^ 

X31 =0       X32 =   0       X33 = 1.535 

In this case, all weapons of types two and three are used and eleven 

weapons of type one are spared. 

Other Constraints 

One of the strengths of linear programming is the capability of 

adding additional constraints to reflect different operational consider- 

ations without abandoning the entire model. 

For example, if it is desired that every target in category j be 

targeted with at least one weapon, then the addition of the following 

constraint will assure that the final allocation reflects this require- 

ment : 

m 

I Xij> 1.0 
i = l 

Also,   if a weapon of  type    i     is  restricted  from hitting  targets  in 

category  j,   then  letting  8^4   =1,   effectively prohibits such an allocation, 

Clearly,  many  other  variations are possible depending upon the 

requirements  of  the particular allocation problem. 

THE  INTEGER  PROGRAMMING MODEL FOR ALLOCATION WITHIN A CATEGORY 
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After  it has been determined how many weapons of each  type  should be 

allocated  to each  category,   it  is  necessary to determine how these  weapons 

should be  distributed among the  individual  targets in  that   category  so as 

to minimize  the average probability of  survival of the targets   in  the 

category. 

In the  case where the total number of weapons assigned  to a  category 

does  not  exceed the number of targets  in the category,   the  minimum value 

for  the probability of survival of  the  category  is attained when only one 

weapon is  assigned  to each target   to the extent  that  they  are available. 

However,  when  the number of weapons allocated to a category exceeds 

the number  of targets   in that  category,   the  problem of allocating them 

optimally becomes more  complex.     The  integer programming model which 

follows  is  designed  to  insure an optimal allocation in this  case. 

Notation 

N = number of targets in the category 

L = maximum permissible number of weapons assigned to any individual 
target in the category 

K = number of different weapon types assigned to the category 

bi  =  number of weapons of type  j assigned to the category; 

Sj = probability of survival of a single target in the category when 
targeted with a single weapon of type j. 

A a number of different allocations 

ai := (aii» ai2» *** » aiK) = allocation of type i, where aij is the 
number of weapons of type  j used in allocation i; i=l,2 ••• ,A 

Pj ■ probability of survival of an individual target with an alloca- 
tion of type i. 

T^ = number of Individual targets which are targeted with an alloca- 
tion of type i. 

The Allocations 

As mentioned above, an allocation against an individual target is 

defined to be a k-vector in which the jlil component is the number of 
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weapons of type j used in the allocation.  Since the maximum number of 

weapons assigned to any individual target is L, the allocation is further 

restricted so that the sum of the components is L or less. 

Given a value for L and K, the number of different allocations is 

i=o 

Associated with each allocation a^ is a number P^, representing the 

probability of survival of an individual target, when targeted with 

allocation a^. 

Example 

Suppose K=L=2,Si=.5,S2=.5 

2 

ThenA=y(2+i-l)=(j)+(f)+(|) =6 

i=o 

The six allocations are: 

ai = (0,0)       as = (0,1) a5 = (0,2) 

as = (1,0)       a4  = (2,0) a6 = (l,l) 

The  six associated probabilities of survival are 

Pi=(.5)0(.5)0=l P3=(.5)0(.5)1= .5            P5=(.5)
0

(.5)
2

= .25 

?2={.1)H,3)0= .3 P4=(.5)2(.5)0= .09            Pe^O)1^)1- .15 

The  Integer  Programming Problem 

The  integer programming problem which minimizes the average 

probability of  survival of targets  in the category  subject to weapon 

availability is: 

Minimize 2.pi 
i=l 

ri 

Subject to 

1.) 

A 

=N 

i=l 
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2.)     5!aijTi-bj; j=1,""'K 

is 

i=l 

If N=400, bi=550, and b2=220, then the integer programniing problem 

Minimize  IT1+.3T2 + . 5T3+.09T4+.25T5+. 15T6 

Subject to 

1.)    Ti+T2 +T3+T4+T5+T6=^00 

2.)    0Ti+lT2+OT3+2T4+0T5+lT6< 350 

0Ti+0T2+lT3+0T4+2T5+lT6< 220 

Further Refinements 

In linear and integer programming problems, the most common way of 

adding restrictions to a problem is to add appropriately chosen constraints 

In this problem, however, some interesting restrictions may be obtained by 

eliminating certain variables. 

1. Cross-Targeting If it is desired that each target be hit by more 

than one different weapon type, eliminate all variables which are 

associated with allocations which do not meet this requirement. Another 

way to do this is to retain the variable, but set the coefficient of this 

variable equal to one in the objective function. 

2. In General All allocations may be examined to see that they meet 

operational requirements.  Those which do not are eliminated, and the 

answer obtained to the resulting problem reflects these restrictions. 
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CHAPTER III 

THE COMPUTER MODEL 

GENERAL DESCRIPTION 

A weapon allocation program (WALLOP) using linear programming to 

allocate weapons to the objective military targets is presently interfaced 

at Hq SAC with other war gaming computer models.  These programs are 

merely bookkeeping models that build the weapon, target, and damage 

expectancy arrays to be used as inputs for the LP models. 

Problem Size 

The program in its current configuration has the capability of 

handling J)0  target categories and 50  weapon types.  In this program all 

weapons of identical characteristics are grouped into types:  e.g., all 

MINUTEMAN II would be one type, and targets of identical, or very similar, 

characteristics are grouped into categories.  This grouping causes very 

little loss in accuracy and considerably shortens computational time. 

There is no restriction on the number of targets in each category or 

number of weapons in each weapon slot. 

Running Time 

Typical cases using 29 target categories and IJ weapon types have 

been solved in approximately hO  seconds of CPU time on the IBM dual core 

7090 computer. 

Attack Sequence 

Instead of allocating all weapons at one time, it is of interest to 

the user/analysts at Hq SAC to allocate the weapons in a sequence of 

attacks.  A sequence of four different attacks are presently structured 

in the program for each input-case. 

1. An ICBM Attack 

2. An SLBM Attack 

Preceding page blank 85 



5« A Bomber Attack 

h,    A  Bomber Attack when bomber weapons are restricted from certain 

target categories. 

The weapon laydown for each attack is optimized using one of the LP 

models.  It takes only a very minor coding modification to reconfigure 

the forces in each attack or, if desired, to allocate all the weapons at 

one time. 

Program Input 

The input to WALLOP consists of: 

1. The target, weapon, and damage expectancy matrices. They may 

be generated by other models and then interfaced with the program by the 

use of magnetic tape as done at Hq SAC, or may be read in from input cards. 

2. The relative importance of the target categories for each 

attack.  One may specify either ratios for aggregate entries (grouping 

the target categories in hard and soft targets) or ratios for individual 

categories.  Both modes may be freely intermixed. 

5.  The philosophy of weapon allocation.  The philosophy of weapon 

allocation is related to the utilization of the achieved damage expectancy 

(DE) between successive attacks. 

a. Isolation.  When targeting in isolation, each weapon system 

attacks the entire target complex taking no credit for any previous damage 

achieved, hence a very conservative targeting philosophy. Also, this 

option may be used to ensure cross targeting to reduce the risks of 

unexpected high failure rates of any specific weapon type, or group of 

weapon types, thus avoiding a catastrophic failure of the war plan. 

b. Time Sequence.  In this option the attacks are structured 

into the program as indicated previously.  The missile attack was broken 

into an ICBM and an SLBM portion so that the study director or user/ 

analyst may have better visibility of the contribution by each weapon 

system to the total damage achieved. The ICBM and SLBM attacks precede 

the bomber attack as would normally be the case due to their short 

reaction time. The ratios of the desired damage to the individual 
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categories are adjusted by  the damage achieved  in the  individual  target 

categories during  the previous attacks.     It   is an easy modification to 

the present program to adjust  the desired  ratios of damage by a   specified 

percentage of  the  damage  achieved  in all  the categories.     The mathematical 

development of  this option   is  presented  in Appendix. 

c.     Reconnaissance Mode.     This  option  is  designed so  that   the 

study director or  u.ser/analyst can see  the effect of ha\ ing reconnaissance 

The attacks are  structured   in  the  time   sequence mode.     After each  attack, 

the number of  targets  In each  category   is  adjusted by  the  ones  destroyed. 

Subsequent attacks utilize  the remaining targets  in each category.     This 

mode  could be  used  to simulate having empty  silo  information,   for  example. 

The  forces would have  to be   sufficiently  flexible and responsive  to permit 

target  changes  indicated by  the reconnaissance. 

Computer  System 

The program WALLOP  is  currently  Implemented on  the dualcore  SAC IBM 

7090 computer.     Core Storage consists of two 52,768 word modules 

designated A and B.     Core  B is a 52K   word   storage bank  identical  to Core 

A.     The additional  core  storage feature  gives  the  system a 65K capability. 

Unfortunately,   all  FORTRAN users are restricted  from using B core because 

the  IBSYS operating system  is  unable  to address  this  core bank.     The 

maximum address  that  can be  contained in the 7090  instruction  is 77777a, 

which  covers  the entire  address range of one  core bank.     Several manual 

and internal switches may be checked by  the  control  unit  to determine 

which  core unit  is  actually being referenced.     Subroutines were written 

In MAP to be  called  from the  FORTRAN main  program which  facilitates  the 

exchange of data between storage modules  Core A  and Core  B.     The  sub- 

routines GET and  PUT were  designed  to give   the  FORTRAN programmer   full 

use  of "B"  core as  a  supplementary  storage  area.    Only  one or more 

consecutive core   locations may be moved  through  each  call  of  these   sub- 

routines.     Due   to  the  size  of each LP problem and  the  number of  cases 

investigated for  each  study,   these  subroutines made   the  entire   linear 
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programming allocation scheme possible in an acceptable amount of computer 

running time.  The only restriction remaining is that all data processing 

must be performed in "A" core. 

Program Restrictions 

Just two major constraints have been programmed into the program 

WALLOP.  First, WALLOP can only nandle a maximum of 100 constraint 

equations, which could be increased by enlarging internal array storage. 

Second, the number of constraint equations times the number of variables 

may not exceed 52760. 

DETAILED DESCRIPTION 

Input Processing 

The program WALLOP will build the entire input necessary for the LP 

models from the four arrays:  targets, weapons, damage expectancy, and 

desired ratios.  Figure 1 depicts the general interrelationship between 

the input to the program and input necessary for the LP weapon allocation 

models. 

PROGRAM WALLOP 

INPUT  DATA OUTPUT 
DATA 

 ► 
Build Input 
for LP wpn 
allocation  j 
models 

LP 
Algorithm 

Figure 1 

Maximum usage of default options have been utilized for user conve- 

nience and in order to keep input cards at minimum. 

Parameter cards may be inserted into the input stream to override 

any default characteristic.  For example, at SAC, the target, weapon, and 

DE matrix are created by other computer programs and are written on 

magnetic tape.  The default option is to process all the cases on this 

tape unless a "case" card is detected in the input stream of control 
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cards. Only the cases indicated on this "case" card will be processed. 

The parameter cards may appear in ANY order and are processed by the sub- 

program INPUT.  Input cards may be used to alter all arrays of the 

original input data when interfacing with magnetic tape. 

The major input arrays, size and contents are: 

TGT (50) 

WEAP (50) 

SIJ (50,50) 

VAL (30) 

MINS (50) 

TMAP (30) 

WMAP (50) 

NCAT 

NWEAP 

The number of targets in each category; each entry 
is considered as one category. 

Fifty different weapon types may be used. 

The survivability of each weapon/target category 
combination (l - D^i) 

The ratios of damage by category for the current 
attack. 

The minimum probability of survivability for each 
category--cut off. 

The target category mapping vector which contains 
the index number of the categories containing 
targets for this attack. 

The weapon type mapping vector contains the index 
number of the weapons for the current attack. 
(Explained below.) 

The number of target categories for this attack. 

The number of different weapon types for this 
attack. 

The interrelation of the arrays are presented pictorially in Figure 2 

SIJ MINS        TGT VAL        TMAP m 

WEAP 

WMAP 

Figure 2 
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To allow complete freedom in the choice of target cate'gorles and 

weapon types, all access to the data arrays is made through their 

respective mapping vectors.  Hence, for example, if only five weapon 

types are to be used, ANY five slots may be used in the WEAP array.  The 

mapping arrays for weapons, (WMAP) will be built with the first five 

entries containing the index of the weapon slots used. 

The advanced LP algorithm specifies the order of equation so that 

Ci    C2        ^ 
cn 

— < — < • • • < — 
Pi  - P2 "      - Pn 

holds.  These C^ may be different in each attack, hence the order of 

equations may also be dif er  .. 

All equations will be generated by using the entries in TMAP.  TMAP 

contains the index of the valid target entries of the JO  possible 

categories which is also the index of the corresponding values for the 

desired ratios, and when applicable, the minimum level for the probabil- 

ity of survival (cut-off).  By forcing all entries to any of the arrays 

through the appropriate mapping vector, the number of words to be sorted 

is reduced from 159 to 3 words for each exchange.  Hence, the time required 

for the sort for each attack is reduced. 

Example: 

The contents of TGT (?) is to be interchanged with TGT (25).  Not 

only must the entries in TGT, VAL, and the MINS array be interchanged 

but also the 50 words for each entry in the SIJ array must be Interchanged 

accordingly. 

Sort Procedure 

A modified version of the bubble sort is utilized because it is 

very efficient in the use of core storage required. One drawback to it 

is that it requires a rather large number of operations.  It seemed to 

be unnecessary to go to a higher level of sophistication in a sort 

technique for a maximum of 50 items.  The principle of the sort is to 
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Start at the bottom of the argument  file and compare pairs of arguments 

in turn.    The  larger argument of a pair is placed in the  lower  index 

position of the  pair;   the  smaller argument  value  is placed  in the  higher 

index position. 

The comparison continues until element XQ has been processed.     The 

result  is  that  the   largest  argument  in the  file has "bubbled" to  the  top 

position.     The bubbling procedure is  then repeated on the resulting  file 

reduced by  the  top member which need not be  processed any   longer.     The 

second pass bubbles  the  second highest value  to  its proper position on 

the  file.    After  n-1 passes,  a  file of n  items will be  sorted. 

It was recognized that for certain files of data,  the file may be 

sorted after fewer  than the worst  case of n passes.    An indicator variable 

was introduced and set  to 0 at  the start of each pass and set  to 1 after 

each bubble interchange.    After each pass  is  complete, a test of the 

value of this  indicator will determine  if a  subsequent pass  is necessary. 

Generation of Arrays A and B 

Since "B-core"  cannot be used for processing under the IBSYS 

operating system,   it became the logical place to store Array A,   the  co- 

efficients of the constraint equations.    All 32K is reserved for Array A. 

All data must be  in consecutive  locations to be  transferred to or  from 

"B-core"  through  one  call  of the  subroutines  GET and PUT which do  the 

actual data transfer.     Since the LP algorithm utilizes Array A column by 

column,   it  is very desirable to build up Array A column by column  for 

most efficient data  transfer between core banks.     To allow rapid identi- 

fication of the beginning core  location of each column in B-core,   each 

column of the Array A has a  specific  location in B-core dependent upon 

the  column number and  the number of constraint equations  in the problem. 

This in effect packs all  the data  in B-core and  increases the problem 

size that can be handled. 

As a  specific column  is requested by  the  LP algorithm by  column 

number,   it  is retrieved from B-core using  1  + M*(j-l),   to  locate   its 
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starting core location in B-core, where M is the number of constraint 

equations and J is the desired column number. 

Figure 5 portrays how Arrays A and B appear for a case with 2 

weapon types and 5 targets for the basic and advanced LP model. 

BASIC LP MODEL ARRAY A VARIABLES       ARRAY B 

Xn Xi2 X13 X21  X22 X23  Yi    B 

RATIO 
EQUATIONS 

<: 

11 InS 21 

InS 12 

InS 13 

1 

lnS22     1 

lnS23 1 

Ci 

C2 

C3 

STOCKPILE 
EQUATIONS 

Ai      A£ bi 

b2 

ADVANCED LP MODEL 

X11 X12 X13 X21  X22 X23  Y L Y2 Y3 B 

RATIO   ^^ 
EQUATION \ 

InSn         InSpi          1 

lnSi2         InSgg     1 

InSiß        InSgs 1 

1 

1 

1 Ci 

C2 

C3 

STOCKPILE y^ 
EQUATIONS \ 

Ai  A2  A3 

Ai  A2  A3 

bi 

b2 

CUT-OFF 
EQUATION 

InSn -InSgi 

-lnSi2 -lnS22 

-lnSi3 -lnS23 

Mi 

M2 

M3 

FIGURE  5 
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where ci,   eg,  C3    are the desired ratios. 

^i»  ^2,  b3    are the total number of weapons. 

Mi,  M2,  M3    are the minimum  levels  of survival. 

Ai>  A2,  A3    are  the number  of targets   in each  category. 

Sixt ''',SSQ are  the  probabilities  of survival. 

All  terms   in Arrays A and  B are  generated by addressing  through TMAP, 

the target mapping vector which has been  sorted so that  the  order  of 

equations  for  the advanced LP model will hold.     Looking at Array A   in 

Figure 5>  one  sees  that  the terms for  the  cut-off equations are  just   the 

negatives  of  the  terms  in the ratio equations.     The program will  build 

one entire  column including the cut-off term but will only  transfer  to 

B-core  the appropriate number of words  that  correspond  to  the model 

selected by  the  user. 

Objective Function 

A major  difficulty was encountered   in determing the  numeric  values 

for the co-efficients  of the Y^  in the objective  function  for  the 

advanced LP model.     The LP algorithm would  loop,   give non-optimum answers, 

or  the ratios were   incorrect  for  the  probability of survival.     This was 

attributed to errors due  to round off,   truncation,  and scaling which would 

cause weapons  to be mlsallocated. 

Different schemes were devised to determine the value of these co- 

efficients to alleviate this problem. The program now builds these co- 

efficients  iteratively. 

ci =  1 

Ci+1 = E  * et 

Where E =  10 

While the value of E is an ad hoc value, it has worked reasonably 

well for most problems. The user/analyst may override this value of E 

by a  parameter  card  if desired. 

Linear  Programming Algorithm 
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The program WALLOP will call an LP algorithm in the form of a 

subroutine to solve the weapon allocation problem after all arrays have 

been built.  The desirable features of any LP algorithm are: 

1. Accuracy of the solution, including its independence of row 

and column scale factors 

2. Storage needed for data 

3. Core storage necessary for the subroutine 

k.     Speed of the solution 

An LP algorithm originally written by RAND was utilized after 

extensive modification to run on the 7090 and to utilize B-core 

efficiently.1 The method of inverting used in this routine is of 

interest since it differs from the usual procedures and is presented 

here. 

Inversion Method 

A typical method of inverting is to pivot in each column that is 

part of the basis, pivoting in the row in which the column entry has 

the largest absolute value.  For example, suppose 

A = 

where c   is a  small number whose absolute value is less than half the 

accuracy to which unity can be represented.    Thus,  on an IBM 70^0,  € 

might be   10     .     Now p: 

first row and obtain: 

~9 
might be 10  . Now pivoting in the first column, we would choose the 

B 

But we assume  that  f.   is small enough  so that  e-^ numerically becomes  -^, 

Then we  pivot   in the  second row of  the  second column and obtain: 
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A = I =( B = W = 

hence, va = 0, wg = 1. We note the correct answer is wi = e, w2 = l-2e. 

The e has been absorbed into the round-off error. 

The following pivot scheme avoids this problem: 

1) Let yi »ys, • • * »ym be the transformed column in which we wish to 

pivot.  Let bi.bg,* * *»hm be the current values of the trans- 

formed constant vector (i.e., what was previously called w^). 

2) Let S be the set of integers such that ieS if | yi( > TP where TP 

is the pivot tolerance. 

3) Let T be the set of integers such that ieT if h^  = 0. 

k)     If SOT is not vacuous, do Step A; if SOT is vacuous, do Step B. 

A) Let IR, IRe SOT, be an integer such that 

yiRl > (yil  for a11 ie snT- 

B)  Let IR, IRcS, be an integer such that 

yiR 

»IR 
>   ~    for all icS. 

Thus we are effectively pivoting in the row that has the largest ratio 

jy^/b^j.  In the above example, the largest ratio in the first column is 

the second row; hence the result of the first pivo»: is 

l-2e 

A = B = 

Here the  l-2e will be rounded,  presumably,   to unity.     Then we pivot in 

the  first row of the second column to obtain: 

A =( B = 
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Hence we get wg = 1» wi = e, which is actually the correct answer within 

round-off error.  This method has the disadvantage that, in not choosing 

the largest element in a column to determine the pivot row, we may get 

an element that barely exceeds the pivot tolerance.  But we nonetheless 

believe that the increased accuracy justifies this approach. 

Other choices could have been made for the pivot element.  For 

example, instead of pivoting on columns in column order, one could first 

choose the eligible row with the smallest Wi, then choose from that row 

of the matrix the eligible element with the largest absolute value. This 

was not done because of timing considerations, and because it would make 

the selections scale-dependent. 

The pivot tolerance TP is used in Step 2 to determine whether or 

not a y^ is zero. A satisfactory method of computing this tolerance is 

first to compute, on every iteration, 

m 

YMAX = max |yi| 

i=l 

Then the pivot tolerance for that iteration is taken to be TP=YMAX * 2 e. 

Then, on a machine that carries numbers in floating point notation to a 

relative accuracy of 2 27, we assume y. = 0 if [y^l^TF. 

Output 

Two total damage figures are computed. One includes bombers 

unrestricted, and the other includes a bomber attack in which the bombers 

are restricted from specific target categories.  The damage achieved by 

each system in isolation is also shown so that the study director or user/ 

analyst can weigh the contribution for each weapon system in relation to 

the total. 

When using the advanced LP model, the program will check the probabil- 

ity of survival to see if the desired ratios have been achieved.  If they 

do not conform to the desired ratios, a scaling problem is present. An 

error message is printed and the attack is rerun without cut-off. 
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Since the probability of survival is an approximation, an integer 

programming routine must be used to find the actual Ps.  For the 

insufficient weapon case where there are more targets than weapons 

allocated, the actual Ps can be calculated.  The approximate Pc will be 

used in place of the actual Ps for the other case until an integer 

programming routine can be implemented into the program.  The program 

will use an Iterative procedure to adjust the desired ratios in order 

that the actual Ps corresponds to the desired ratio of Ps.  However, 

convergence may require too many iterations to be practical and may not 

be possible at all.  For all insufficient weapon cases, experience has 

shown the resultant allocation to be very good (if not precisely optimal) 

often after only a few iterations.  During the iterative process, the 

program will take the solution for one cycle as the initial basis for 

the next cycle, hence, computer time is kept at an absolute minimum. 

General Overview 

This completes one cycle through the program for one attack. WALLOP 

will then process the next attack by setting the desired weapons in the 

weapon mapping array (WMAP) and the desired targets in the target mapping 

array (TMAP).  The entire cycle is then repeated. 

A general flow diagram is depicted in Figure k. 

CONFIGURE THE 
APPROPRIATE 
MAPPING ARRAYS 
FOR THE DESIRED 
WPNS AND TGTS 
FOR THIS ATTACK 

I 

BUILD INPUT 
FOR LP 

YES 

LP ALGORITHM TO 
SOLVE PROBLEM 

i 
FORMAT AND PRINT 

RESULTS 

NEXT CASE 

FIGURE k 
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A more detailed flow diagram Is depicted In the Appendix. 

FUTURE CONFIGURATIONS 

The following functional flow chart Is presented to Illustrate the 

future characteristic of the program WALLOP.  The weapon minimization 

models are currently undergoing testing, hence are not included in this 

report.  The only major building block still not implemented is the 

integer programming models for allocating within a category. An integer 

programming routine must still be implemented on the dual core IBM 7090 

at SAC. 

Since the initial implementation of the program, routines have been 

designed, coded and implemented to enable FORTRAN users to use disk 

storage. A version of the program, which builds the constraint equations 

row by row on the disk in contrast to the present column by column 

approach, is currently under test. Array A is then recalled into A core 

in blocks of 100 x 100 words.  The matrix is transformed (A-»A ' ) and 

written into B-core for use of the LP algorithm.  By building the constraint 

equations as defined, future constraints can be added rather easily.  It 

is currently planned for the model to be modified so that parameter cards 

will control all constraints.  For example, if coverage is wanted on a 

particular category, a parameter card will specify this requirement and 

the constraint equation will be included in the LP model. 

58 



Build input 
for LP 
model 

LP 
Algorithm 

Adjust 
desired ratios 

Suff. weap.   LP 
model--weap. 
preference 

Calc.   actual   Ps  of   the 
categories  using  the 
Integer  Prog,   model 

Suff. weap.   LP 
model  to minimize 
total weapons 
used 

(   STOP      ] 

FIGURE 5 

59 



APPENDIX 

MODIFICATION OF THE  BASIC  LP WEAPON ALLOCATION ALGORITHM--TIME  SEQUENCE MODE 

The  probability  of  survival  of  the j— target  category  is approximately 

m X, . 

i=l 

Where K. is the probability of survival of the jÜ-2. category after the last 

attack.  When targeting in isolation, Ki=l, j=l,-'-M 

Merely concentrating on Equation 1 of the original algorithm, the problem 

becomes: 

Minimize Y 

Subject   to 

m X. 

j "TP'j'1J - C
J

Y
     

J=1',"N K 
J 

i=l 

if both sides are divided by K. 

m               X. . /C. 
■ (s..) 1J < (   J 

ij IK. 
1=1 \ j 

j=l,-.-N 

proceeding just  as   in  tho^original   derivation by   taking  the   logarithms  of 

both   sides  but   treating    f —J  as  one   term 

V 
Equation   1  becomes: 

(c: 
Vdog Sij)   Xij  < log(^)+ lo8 Y 

or  as   before 

ill 
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JdogStj)  X^  -   log^ 

Thus  this   set   cJ   ■ ouations   produced will   take   into  account   the   total 

damage  achieved by  the  preceeding attacks. 
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